# The numbers called “octonions”

In 2014, a graduate student at the University of Waterloo, Canada, named Cohl Furey rented a car and drove six hours south to Pennsylvania State University, eager to talk to a physics professor there named Murat Günaydin. Furey had figured out how to build on a finding of Günaydin’s from 40 years earlier — a largely forgotten result that supported a powerful suspicion about fundamental physics and its relationship to pure math.

The suspicion, harbored by many physicists and mathematicians over the decades but rarely actively pursued, is that the peculiar panoply of forces and particles that comprise reality spring logically from the properties of eight-dimensional numbers called “octonions.”

As numbers go, the familiar real numbers — those found on the number line, like 1, π and -83.777 — just get things started. Real numbers can be paired up in a particular way to form “complex numbers,” first studied in 16th-century Italy, that behave like coordinates on a 2-D plane. Adding, subtracting, multiplying and dividing is like translating and rotating positions around the plane. Complex numbers, suitably paired, form 4-D “quaternions,” discovered in 1843 by the Irish mathematician William Rowan Hamilton, who on the spot ecstatically chiseled the formula into Dublin’s Broome Bridge. John Graves, a lawyer friend of Hamilton’s, subsequently showed that pairs of quaternions make octonions: numbers that define coordinates in an abstract 8-D space.

There the game stops. Proof surfaced in 1898 that the reals, complex numbers, quaternions and octonions are the only kinds of numbers that can be added, subtracted, multiplied and divided. The first three of these “division algebras” would soon lay the mathematical foundation for 20th-century physics, with real numbers appearing ubiquitously, complex numbers providing the math of quantum mechanics, and quaternions underlying Albert Einstein’s special theory of relativity. This has led many researchers to wonder about the last and least-understood division algebra. Might the octonions hold secrets of the universe?

“Octonions are to physics what the Sirens were to Ulysses,” Pierre Ramond, a particle physicist and string theorist at the University of Florida, said in an email.

Günaydin, the Penn State professor, was a graduate student at Yale in 1973 when he and his advisor Feza Gürsey found a surprising link between the octonions and the strong force, which binds quarks together inside atomic nuclei. An initial flurry of interest in the finding didn’t last. Everyone at the time was puzzling over the Standard Model of particle physics — the set of equations describing the known elementary particles and their interactions via the strong, weak and electromagnetic forces (all the fundamental forces except gravity). But rather than seek mathematical answers to the Standard Model’s mysteries, most physicists placed their hopes in high-energy particle colliders and other experiments, expecting additional particles to show up and lead the way beyond the Standard Model to a deeper description of reality. They “imagined that the next bit of progress will come from some new pieces being dropped onto the table, [rather than] from thinking harder about the pieces we already have,” said Latham Boyle, a theoretical physicist at the Perimeter Institute of Theoretical Physics in Waterloo, Canada.

Decades on, no particles beyond those of the Standard Model have been found. Meanwhile, the strange beauty of the octonions has continued to attract the occasional independent-minded researcher, including Furey, the Canadian grad student who visited Günaydin four years ago. Looking like an interplanetary traveler, with choppy silver bangs that taper to a point between piercing blue eyes, Furey scrawled esoteric symbols on a blackboard, trying to explain to Günaydin that she had extended his and Gürsey’s work by constructing an octonionic model of both the strong and electromagnetic forces.

“Communicating the details to him turned out to be a bit more of a challenge than I had anticipated, as I struggled to get a word in edgewise,” Furey recalled. Günaydin had continued to study the octonions since the ’70s by way of their deep connections to string theory, M-theory and supergravity — related theories that attempt to unify gravity with the other fundamental forces. But his octonionic pursuits had always been outside the mainstream. He advised Furey to find another research project for her Ph.D., since the octonions might close doors for her, as he felt they had for him.

But Furey didn’t — couldn’t — give up. Driven by a profound intuition that the octonions and other division algebras underlie nature’s laws, she told a colleague that if she didn’t find work in academia she planned to take her accordion to New Orleans and busk on the streets to support her physics habit. Instead, Furey landed a postdoc at the University of Cambridge in the United Kingdom. She has since produced a number of results connecting the octonions to the Standard Model that experts are calling intriguing, curious, elegant and novel. “She has taken significant steps toward solving some really deep physical puzzles,” said Shadi Tahvildar-Zadeh, a mathematical physicist at Rutgers University who recently visited Furey in Cambridge after watching an online series of lecture videos she made about her work.

Furey has yet to construct a simple octonionic model of all Standard Model particles and forces in one go, and she hasn’t touched on gravity. She stresses that the mathematical possibilities are many, and experts say it’s too soon to tell which way of amalgamating the octonions and other division algebras (if any) will lead to success.

“She has found some intriguing links,” said Michael Duff, a pioneering string theorist and professor at Imperial College London who has studied octonions’ role in string theory. “It’s certainly worth pursuing, in my view. Whether it will ultimately be the way the Standard Model is described, it’s hard to say. If it were, it would qualify for all the superlatives — revolutionary, and so on.”

## Peculiar Numbers

I met Furey in June, in the porter’s lodge through which one enters Trinity Hall on the bank of the River Cam. Petite, muscular, and wearing a sleeveless black T-shirt (that revealed bruises from mixed martial arts), rolled-up jeans, socks with cartoon aliens on them and Vegetarian Shoes–brand sneakers, in person she was more Vancouverite than the otherworldly figure in her lecture videos. We ambled around the college lawns, ducking through medieval doorways in and out of the hot sun. On a different day I might have seen her doing physics on a purple yoga mat on the grass.

Furey, who is 39, said she was first drawn to physics at a specific moment in high school, in British Columbia. Her teacher told the class that only four fundamental forces underlie all the world’s complexity — and, furthermore, that physicists since the 1970s had been trying to unify all of them within a single theoretical structure. “That was just the most beautiful thing I ever heard,” she told me, steely-eyed. She had a similar feeling a few years later, as an undergraduate at Simon Fraser University in Vancouver, upon learning about the four division algebras. One such number system, or infinitely many, would seem reasonable. “But four?” she recalls thinking. “How peculiar.”

After breaks from school spent ski-bumming, bartending abroad and intensely training as a mixed martial artist, Furey later met the division algebras again in an advanced geometry course and learned just how peculiar they become in four strokes. When you double the dimensions with each step as you go from real numbers to complex numbers to quaternions to octonions, she explained, “in every step you lose a property.” Real numbers can be ordered from smallest to largest, for instance, “whereas in the complex plane there’s no such concept.” Next, quaternions lose commutativity; for them, a × b doesn’t equal b × a. This makes sense, since multiplying higher-dimensional numbers involves rotation, and when you switch the order of rotations in more than two dimensions you end up in a different place. Much more bizarrely, the octonions are nonassociative, meaning (a × b) × c doesn’t equal a × (b × c). “Nonassociative things are strongly disliked by mathematicians,” said John Baez, a mathematical physicist at the University of California, Riverside, and a leading expert on the octonions. “Because while it’s very easy to imagine noncommutative situations — putting on shoes then socks is different from socks then shoes — it’s very difficult to think of a nonassociative situation.” If, instead of putting on socks then shoes, you first put your socks into your shoes, technically you should still then be able to put your feet into both and get the same result. “The parentheses feel artificial.”

The octonions’ seemingly unphysical nonassociativity has crippled many physicists’ efforts to exploit them, but Baez explained that their peculiar math has also always been their chief allure. Nature, with its four forces batting around a few dozen particles and anti-particles, is itself peculiar. The Standard Model is “quirky and idiosyncratic,” he said.

In the Standard Model, elementary particles are manifestations of three “symmetry groups” — essentially, ways of interchanging subsets of the particles that leave the equations unchanged. These three symmetry groups, SU(3), SU(2) and U(1), correspond to the strong, weak and electromagnetic forces, respectively, and they “act” on six types of quarks, two types of leptons, plus their anti-particles, with each type of particle coming in three copies, or “generations,” that are identical except for their masses. (The fourth fundamental force, gravity, is described separately, and incompatibly, by Einstein’s general theory of relativity, which casts it as curves in the geometry of space-time.)

Sets of particles manifest the symmetries of the Standard Model in the same way that four corners of a square must exist in order to realize a symmetry of 90-degree rotations. The question is, why this symmetry group — SU(3) × SU(2) × U(1)? And why this particular particle representation, with the observed particles’ funny assortment of charges, curious handedness and three-generation redundancy? The conventional attitude toward such questions has been to treat the Standard Model as a broken piece of some more complete theoretical structure. But a competing tendency is to try to use the octonions and “get the weirdness from the laws of logic somehow,” Baez said.

Furey began seriously pursuing this possibility in grad school, when she learned that quaternions capture the way particles translate and rotate in 4-D space-time. She wondered about particles’ internal properties, like their charge. “I realized that the eight degrees of freedom of the octonions could correspond to one generation of particles: one neutrino, one electron, three up quarks and three down quarks,” she said — a bit of numerology that had raised eyebrows before. The coincidences have since proliferated. “If this research project were a murder mystery,” she said, “I would say that we are still in the process of collecting clues.”